
www.ierjournal.org International Engineering Research Journal (IERJ) Volume 2 Issue 2 Page 663-667, 2016, ISSN 2395-1621

© 2015, IERJ All Rights Reserved

Page 1

 ISSN 2395-1621

Conversion of Bitmap Image to Vector

Image for Image Processing

Applications

#1
Mrs.Sonal D. Borhade,

#2
Prof. P. M. Jadhav

1borhadesonal@gmail.com

2 pmjadhav@mit.edu

#1
PG Student, Department of Electronics, Maharashtra Institute of Technology, Pune, India

#2
Department of Electronics, Maharashtra Institute of Technology,Pune, India

ABSTRACT

ARTICLE INFO

Image vectorization is done to increase visual quality and reducing size of the image.

There are various softwares available for this. They scan every pixel of the image and

render its vectorized form. Instead, the idea is to perform edge detection and then

convert the edge image to vector image. This not only reduces size of the image but also

reduces time for execution. This can be used in applications like Rotoscoping (a stage of

animation process), erragant gesture correction, correction of bad lighting patch and

such other applications. Its application in Rotoscoping is demonstrated. In the near

future a video format equivalent to vector format of image is expected to come in use.

Also, a codec that fills between the contours is already developed. When these two will

work in combination, the visual media will experience a revolution.

Keywords— Image Vectorization, Rotoscoping, Vector Image Format, Contours

Article History

Received :15
th

 April 2016

Received in revised form :

17
th

 April 2016

Accepted : 19
th

 April 2016

Published online :

23
rd

 April 2016

I. INTRODUCTION

 Every digital image falls into one of two categories: a

Vector image and a Bitmap image (also called as raster

image). A bitmap image, by name itself, represents mapping

of bits in the form of pixels in a coordinate system. Every

color pixel is stored as a value that lies between 0 to 255.

Hence, greater the resolution, greater the number of pixels

and greater is the size of image in turn When a bitmap is

zoomed or stretched to a high multiple, the edges in the

image appear like a staircase and the region with subtle

color appear like boxes. This is due to the pixel nature of the

bitmap image. This is the problem we usually face when we

are trying to use a low resolution logo to fit in a larger

space. This results in loss of quality. This greatly reduces

file size because only these mathematical entities are stored

which needs very less space. Also, the mathematical entities

are re-rendered at a greater or smaller scale, providing

consistently smooth edges at any size. The idea is that,

instead of converting every part of the bitmap image, we

will convert only the edges of the objects in the bitmap

image. This will take lesser time to compute as will have

lesser file size.The vectorized edge image can then be

zoomed at any size and then filled with proper colors if

required. This type of vector image can prove of great use in

logo design and animation artwork.

II. STEPS IN VECTORIZATION

The process of vectorization of image consists of different

steps. Every step is selected according to the required nature

of final output and the application using it.

A. Converting Input Image to Grayscale

The input image to this step is the full colour bitmap image.

Grayscale image carries only intensity information. Images

of this sort, also known as black-and-white, are composed

exclusively of shades of gray, varying from black at the

weakest intensity to white at the strongest. It is done to

reduce computational requirements and also because the

final output required is black and white.

The output of this stage is a Grayscale image.

mailto:1borhadesonal@gmail.com
https://en.wikipedia.org/wiki/Luminous_intensity
https://en.wikipedia.org/wiki/Black-and-white
https://en.wikipedia.org/wiki/Grey

www.ierjournal.org International Engineering Research Journal (IERJ) Volume 2 Issue 2 Page 663-667, 2016, ISSN 2395-1621

© 2015, IERJ All Rights Reserved

Page 2

B. Blurring Image
The input to this stage is the Grayscale image generated in

the previous stage.Canny edge detection is sensitive to

noise. Gaussian blurring of the grayscale image is done to

reduce noise. A Gaussian blur effect is typically generated

by convolving an image with a kernel of Gaussian values. In

practice, it is best to take advantage of the Gaussian blur‟s

separable property by dividing the process into two passes.

In the first pass, a one-dimensional kernel is used to blur the

image in only the horizontal or vertical direction. In the

second pass, another one-dimensional kernel is used to blur

in the remaining direction. The resulting effect is the same

as convolving with a two-dimensional kernel in a single

pass, but requires fewer calculations. When converting the

Gaussian‟s continuous values into the discrete values

needed for a kernel, the sum of the values will be different

from 1. This will cause a darkening or brightening of the

image. To remedy this, the values are normalized by

dividing each term in the kernel by the sum of all terms in

the kernel.

The output of this stage is a blurred grayscale image.

C. Edge Detection

 The input to this stage is Grayscale image with blur.

The purpose of edge detection in general is to significantly

reduce the amount of data in an image, while preserving the

structural properties to be used for further image processing.

Here we have used canny Edge operator. The performance

of the Canny Edge Detection algorithm depends heavily on

the adjustable parameters, σ, which is the standard deviation

for the Gaussian filter, and the threshold values, „T1‟ and

„T2‟. σ also controls the size of the Gaussian filter. The user

can tailor the algorithm by adjusting these parameters to

adapt to different environments
[10]

.

Canny‟s edge detection algorithm is computationally more

expensive compared to Sobel, Prewitt and Robert‟s operator.

However, the Canny‟s edge detection algorithm performs

better than all these operators under almost all scenarios
[11]

.

Evaluation of the images showed that under noisy

conditions, Canny, LoG, Sobel, Prewitt, Roberts‟s exhibit

better performance, respectively. Hence, the best of them i.e.

canny edge operator was selected for use.

The output of this stage is an edge image with a specified

threshold.

D. Tracing Algorithm

The input to this stage is an edge image in Bitmap format.

A comparative study of different tracing algorithms revealed

that the Potrace algorithm is very efficient; it produces

visibly better outputs than other comparable algorithms
[5]

.

In addition to its superior graphical output, Potrace also

compares favorably in terms of speed and file size. Potrace

mainly works on concepts of paths, nodes and graphs, those

are easier to computationally implement. Potrace also use

the linear Bezier Curves for smoothing. They are easily

available in Opencv. Other comparable algorithms have

mathematically extensive computations.

So, Potrace Algorithm was selected for tracing. The output

of this stage is vector image ready to display in vector image

format.

E. Display Output in Vector Image Format

Tracing algorithm is implemented in Opencv and Opencv

software does not support vector image format. So there

emerged a need of software which will support such a

format and display the output.

There were several choices from which two of them are

used, Inkscape and Filemonitor. The output of Potrace

algorithm is directly exported to Inkscape and filemonitor.

This is the final Vector Image output which can be used in

several applications.

An easy way to comply with the conference paper

formatting requirements is to use this document as a

template and simply type your text into it.

III. EDGE DETECTION OF IMAGE

 The edge detection is first carried out on the input image

the purpose of which is to significantly reduce the amount

of data in an image, while preserving the structural

properties to be used for further image processing. John F.

Canny (JFC) in 1986 has developed one such algorithm

„Canny Edge Detection Algorithm‟ which will be used for

this purpose [1].

The algorithm runs in 5 separate steps:

1. Smoothing: Blurring of the image to remove noise.

2. Finding gradients: The edges should be marked where the

gradients of the image has large magnitudes.

3. Non-maximum suppression: Only local maxima should

be marked as edges.

4. Double thresholding: Potential edges are determined by

thresholding.

5. Edge tracking by hysteresis: Final edges are determined

by suppressing all edges that are not connected to a very

certain (strong) edge.

Images after edge detection by canny edge detection

algorithm are obtained using these steps and the image

obtained is given in fig.4.

IV. POTRACE ALGORITHM

The equations are an exception to the prescribed

specifications of this template. You will need to determine

whether or not your equation should be typed using either

the Times New Roman or the Symbol font (please no other

font). To create multileveled equations, it may be necessary

to treat the equation as a graphic and insert it into the text

after your paper is styled. A colon is inserted before an

equation is presented, but there is no punctuation following

the equation. All equations are numbered and referred to in

the text solely by a number enclosed in a round bracket (i.e.,

(3) reads as "equation 3"). Ensure that any miscellaneous

numbering system you use in your paper cannot be confused

with a reference [4] or an equation (3) designation.The

Potrace algorithm transforms the Edge Detected Image into

a vector outline in several steps. In the first step, the bitmap

is decomposed into a number of paths, which form the

boundaries between black and white areas. In the second

step, each path is approximated by an optimal polygon. In

the third step, each polygon is transformed into a smooth

outline. In an optional fourth step, the resulting curve is

www.ierjournal.org International Engineering Research Journal (IERJ) Volume 2 Issue 2 Page 663-667, 2016, ISSN 2395-1621

© 2015, IERJ All Rights Reserved

Page 3

optimized by joining consecutive Bezier curve segments

together where this is possible. Finally, the output is

generated in the required format.

Execution of every step is carried out in the following stages.

Stage 1: Paths

1. Path runs through vertices. So find the vertices.

2. Construct a directed graph consisting of closed paths.

3. Perform despeckling by dropping all paths whose

interior consists of fewer than „t‟ pixels.

Stage 2: Polygons

1. Construct polygons from closed paths.

2. Optimize polygon to have fewer segments.

Stage 3: From polygons to vector outlines

1. Adjust the position of the vertices of the polygon to

fit the original bitmap as best as possible.

2. Calculate corner and curves based on the lengths of

adjacent line segments and the angles between them.

Stage 4: Curve optimization

1. Attempt to join adjacent curve segments.

2. Join adjacent curve segments that agree in

convexity.

3. Join adjacent curve segments if total change in

direction is less than 179 degrees.

Stage 5: Output Generation

1. Perform scaling and rotation of the image by linear

transformation.

2. Perform redundancy coding in the postscript

backend because it takes advantage of the macro

abilities of postscript language.

3. Quantize the final coordinates, which are real

numbers. (Round them to closest 1/10 of pixel).

The coordinates of the points are then output as

integers.

 The Coding for this algorithm is performed in Open CV

Software. We face a major limitation of the use of this

software tthat OpenCV does not support any vector image

format to display its output. Hence, we exported the output

in File Monitor , which supports .svg format (format for

vector image) and displayed the results.

V. RESULTS

High Resolution, Clear, Good Contrast, Well

Illuminated Input

1. Original image captured with Canon PowerShot SX610 HS (target

portion is shown with red circle)

2. Gray scale image

3. Binary image

4. Target portion Zoomed of Binary image

5. Output Vector image with Threshold 20

6. Output Vector image with Threshold 50

www.ierjournal.org International Engineering Research Journal (IERJ) Volume 2 Issue 2 Page 663-667, 2016, ISSN 2395-1621

© 2015, IERJ All Rights Reserved

Page 4

7. Output Vector image with Threshold 100

 8. Output vector image with threshold 20: Target portion zoomed

9. Output vector image threshold 50 :Target portion zoomed

 Fig.1. Image is captured by Canon PowerShot

SX20 HS. Size 2.4 Mb. The Image consists of a butterfly

with a cut wing. The target portion on the cut wing is

highlighted by a red circle.

 Fig.2. Image is converted to grayscale image

before application of Canny Edge operator resulting in

Image 2.

 Fig.3. Image is converted to binary image

 Fig.4. Image is the zoomed target portion of the

binary image. The pixellation and staircase effect is clearly

visible.

 Then conversion to vector image is done with

Different Threshold Values set for the Canny Edge

Detection operator.

 Fig.5. Image is output vector image with threshold

value 20. The output has more number of edges.

 Fig.6. Image is output vector image with threshold

value 50. The output has lesser number of edges as

compared to Image 5.

 Fig.7. Image is output vector image with threshold

value 100. The output has only very prominent edges

remaining. Threshold value greater than this may remove

many important edges. So, using value greater than 100 for

images having greater details will not be a good choice.

 Fig.8. Image is the target portion of output vector

image (with threshold 20) zoomed. Comparing this image

with image 4 (binary image), the edges are continuous and

crisp.

 Fig.9. Image is the target portion of output vector

image (with threshold 100) zoomed. One smaller edge in the

inner area is not visible.

 Some peculiar advantages of this execution is that outputs

with different thresholds can be achieved which cannot be

done with other existing vectorization softwares. Size of

output image is smaller as specified below.

 Original Image (specimen): 2.96 Mb

 Project Output Image: 62.26 kB

 Inkscape Output Image: 1.04 Mb

Also accuracy can be further increased by setting values of

parameters in Potrace Algorithm.

VI. CONCLUSION

A vectorization method to convert Bitmap image to

vector image is developed in which edges in the images are

extracted first and then converted to vector image. This

gives advantage of further reduction in size of the image.

.

REFRENCES

1. “Potrace: a polygon-based tracing algorithm”, Peter

 Selinger,September 20, 2003.

2. Canny Edge Detection, 09gr820, March 23, 2009.

3. Building Simulation programs in Visual Studio (.NET

2003 and 6.0).

4. OpenCV Reference Manual v2.2, December 2010.

5. “Depixelizing Pixel Art”, Johannes Kopf, Microsoft

Research, Dani Lischinski , The Hebrew University,

May 2011.

6. “Vector Based Codec”, Prof. Phil Willis, University of

Bath,Uk, 12 December 2012

7. "Some Experiments in Image Vectorization", J.

 Jimenez and J.L. Navalon, , IBM J. Res.

 Develop. 26, pp 724-734, 1982.

8. "Computer Processing of Line Images: A Survey",

 R.W. Smith, Pattern Recognition, 20(1), pp7-15, 1987

9. “Sparse Pixel Vectorization: An Algorithm and Its

 Performance Evaluation”, Dov Dori and Liu

 Wenyin, , 2002.

10. “Study and Comparison of Various Image Edge

 Detection Techniques”, Raman Maini & Dr.

 Himanshu Aggarwal, International Journal of Image

 Processing (IJIP), Volume (3): Issue (1)

11. “A Comparison of various Edge Detection Techniques

 used in Image Processing”,G.T.Shrivakshan1, Dr.C.

Chandrasekar, IJCSI International Journal of

 Computer Science Issues, Vol. 9, Issue 5, No 1,

 September 2012, ISSN (Online): 1694-0814

www.ierjournal.org International Engineering Research Journal (IERJ) Volume 2 Issue 2 Page 663-667, 2016, ISSN 2395-1621

© 2015, IERJ All Rights Reserved

Page 5

